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The turbulence structure of equilibrium boundary layers 
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(Received 5 December 1966) 

Measurements in three boundary layers, one with constant free-stream velocity 
and two with power-law variations of free-stream velocity giving ‘moderate’ and 
‘strong’ adverse pressure gradients, are presented and discussed. Several unify- 
ing features of the turbulent motion, expected to appear in all boundary layers 
not too far from equilibrium, are identified. The intensity spectra at higher wave- 
numbers follow the Kolmogorov inertial-subrange law, although the Reynolds 
number is not particularly high even by laboratory standards: in addition the 
smaller-scale motion in the outer layer is determined entirely by the local shear 
stress and the boundary-layer thickness., The large eddy motion increases in 
strength relative to the general turbulence level as the general turbulence level 
increases, and the limited evidence ava3lable suggests that the large eddies are 
similar to those in the free mixing layer. In  all cases the large eddies contribute a 
significant proportion of the shear stress in the outer layer. 

1. Introduction 
Equilibrium turbulent boundary layers are the nearest equivalent of the family 

of laminar boundary layers with similar profiles (Falkner-Skan flows). Exact 
similarity of profiles is possible only if the ratio of a typical eddy length scale, S 
say, to a typical viscous length scale, v/ur say, is constant, which is the case only 
in flow between converging planes. Even outside the viscous sublayer, the flow 
can be similar a t  different streamwise stations only if the surface shear-stress 
coefficient is nearly constant, although, for example, velocity-defect profiles in 
zero pressure gradient are found to be almost exactly similar, when plotted as 
(U, - U)/u ,  against the dimensionless distance from the surface y/S, at Reynolds 
numbers easily attainable in the laboratory (U,S2/v > 5000, according to Coles 
(1962), where 8, is the momentum-deficit thickness). A necessary condition for 
similarity even of this restricted kind is that the contribution of the pressure 
gradient to the growth of the momentum deficit p U:S2 shall be a constant mul- 
tiple of the contribution of the surface shear stress. Since 

where S, is the displacement thickness, this implies (Sl/~w)dp/dx = constant, in 
compressible or incompressible flow. Townsend (1961) and Mellor & Gibson (1966) 
have shown that approximate similarity is obtained (in incompressible flow), if 
U, cc xa, as in laminar flow. In the present work we shall not distinguish between 
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boundary layers with U, cc XU, boundary layers with (S,/r,)dp/dx = /3 = constant 
and the ideal boundary layer (at infinite Reynolds number) with exactly similar 
defect profiles, because the difference between these three definitions of 'equi- 
librium ' is within the experimental error: the nominal definition is U, cc xa. 

In  this paper, Clauser's (1954) workis extended by investigating the turbulence 
structure of equilibrium boundary layers in order to identify any universal rela- 
tions between the various turbulence parameters. Since it is most unlikely that 
the internal processes of the random turbulent motion will be directly affected by 
departure from similarity of the mean velocity profiles, we expect the same uni- 
versal relations to apply in all boundary layers not too far from equilibrium: the 
advantage of doing measurements in equilibrium boundary layers is that mea- 
surements need onIy be made at one station. Measurements have been made in 
the NPL boundary layer tunnel (Bradshaw & Hellens 1966) for three values of 
the exponent a, namely 0, - 0.15 and - 0-255, corresponding t o p  21 0,O.g and 5.4 
and representing zero pressure gradient, moderate adverse pressure gradient and 
strong adverse pressure gradient. It is unlikely that the continuously separating 
boundary layer investigated by Stratford (1959) differs greatly from the third 
boundary layer in its turbulence structure except near the surface. Boundary 
layers in strong fuvouruble pressure gradients are dominated by the flow near the 
surface, where the universal 'mixing length' relations presumably apply, and are 
unlikely to manifest any new features. 

The practical application of this work, together with that of Bradshaw (1965), 
is as an explanation and justification of the hypothesis used by Bradshaw, Ferriss 
& Atwell (1967), following Townsend (1961), in transforming the turbulent 
energy equation (see $7)  into an equation for turbulent shear stress for use in 
predicting boundary-layer development in arbitrary pressure gradient. Their 
basic hypothesis was that the turbulent motion is uniquely related to the shear 
stress profile and independent, at  least to a good first approximation, of the mean 
velocity profile past or present. Three extremely simple empirical functions were 
used to represent the turbulent intensity, its dissipation and diffusion entirely in 
terms of the shear stress: the definitions were respectively 

a1 = TIP?, 
L = (T/P)+/G 

G = ( W / P  + *4"v ) / (~ /P) (~ , , , /P)4  

where q 2  = u2+v2+ w2 and u., v and w are the velocity fluctuations in the x 
( streamwise), y (normal) and x (transverse) directions. 

The behaviour of the dimensionless parameter a,, and of the dissipation length 
parameter L in the inner region of the boundary layer, has been discussed by 
Bradshaw (1965). In  the present paper, the behaviour of L in the outer layer is 
inferred from the intensity spectra and the behaviour of G is discussed in relation 
to the large-eddy structure. The general nature of the turbulent energy balance 
is also discussed. These topics are embedded in a more general analysis of the 
experimental results. A somewhat fuller discussion, a description of the apparatus 
and larger-scale graphs are given in an earlier, unpublished version of this paper 
(Bradshaw 1966 u). 
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2. General description of the boundary layers 
In  order to present large quantities of information in a small number of graphs, 

we have generally taken the liberty of omitting the experimental points. The 
scatter of the points is generally small, as can be seen from our other published 
papers, because an integrator is used to average the hot-wire readings over 
periods of 20 s or more: in any case, the scatter between points on a given run does 
not give any indication of absolute accuracy. 

As was pointed out by Bradshaw & Ferriss (19653), departures from two- 
dimensionality of the boundary layers in tunnels of reasonable width are confined 
to a slow convergence (or divergence) of the flow in the (2, 2)-plane: true secondary 
flows only occur within a few boundary-layer thicknesses of the sidewalls (see 
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FIGURE 1. Mean velocity profiles, 5 = 83 in. (2.11 m). 

figure 13 of Bradshaw & Hellens 1966). The virtual origin, x = xo, of the con- 
vergence may be calculated by equating the imbalance in the two-dimensional 
momentum integral equation to 6,/(x - xo): the virtual origin was roughly 100 ft. 
(30 m) downstream of the working section for both the retarded boundary layers 
and xo may be assumed to  be even greater for the boundary layer in zero pressure 
gradient. The effect of Reynolds normal stresses is comparatively small: even in 
the strongly retarded boundary layer they accounted for only 1% of d6,/dx, 
which must be regarded as within the error of measurement of the latter quantity. 

The boundary-layer thicknesses at  83in. (2.11 m) from the leading edge at  a 
tunnel reference speed of 110 ft./s (34 m/s) and local free-stream speeds of 100- 
130ft./s (30-37 m/s) were 1*25,2.8 and 4-5in. (0~032,0~071,0~114m) respectively, 
so that the Reynolds number in the zero-pressure-gradient case was nearly the 
same as Klebanoff’s (1955). All the measurements presented in the figures, except 
figure 3, were made at  this station. The velocity profiles in the three boundary 
layers (figure 1) did not differ widely in shape ( H  = S,/S, = 1.34,1-4,1-54) and the 
difference in the behaviour of the flows is shown most clearly by the shear stress 
profiles (figure 2). It should be noted that the measurements are a t  different 
Reynolds numbers: the variation of surface shear stress coeacient cf = rw/&p UZ, 
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with Reynolds number, as measured with Preston tubes using Head & Rechen- 
berg's (1962) calibration, is shown in figure 3. Also in figure 3 are shown the 
variations with Reynolds number as given by 
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FIGURE 2. Shear stress profiles. 
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FIGURE 3. Surface shear stress coefficient cf = 7,/$pUf: lines are best fits of overlap law. 
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the surface shear-stress formula derived from the assumption of exact similarity 
of the defect profiles: K is taken as 0.41. At UISl/v = 2 x 104, the differences be- 
tween the measured cfand the Mellor-Gibson prediction for the same pare + 4 %, 
- 1.2 yo and + 6 yo for the three boundary layers. The accuracy of the predictions 
represents a convincing proof of the empirical constancy of the dimensionless 
eddy viscosity v,/U,S, over the whole range of equilibrium boundary layers. 
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FIGURE 4. Boundary-layer parameters plotted against a. 

In  figure 4 some of the simpler boundary-layer parameters measured at  
x = 83 in. (2.1 1 m) are plotted against a, ignoring the effects of Reynolds number. 
Profile parameters and mean velocity profiles measured at different values of x 
are tabulated by Bradshaw ( 1 9 6 6 ~ ) .  

The shear-stress profiles in figure 2 show that the maximum shear stress in- 
creases, with increasing pressure gradient, as the wall shear stress decreases. The 
shear-stress gradient near the wall is considerably smaller than the limiting value 
at the wall, &/dy = dp/dx,  which only applies if IpUaU/axI < Idp/dxl or U < U,. 
The mixing length and eddy viscosity distributions are plotted in figures 5 and 6. 
It is seen that the eddy viscosity is far from constant in the outer part of the 
boundary layer and presumably tends to the molecular viscosity if r represents 
total shear stress, although a tolerable approximation to the mean velocity pro- 
file is obtained by assuming a constant value. It was shown by Bradshaw & 
Perriss (19653) that a universal eddy viscosity v7/UlSl = f ( y / S )  is compatible with 
a, universal mixing length 1/S = f ( y / & )  if the velocity gradient is roughly constant 
over the outer portion of a given boundary layer. The universality emphatically 
does not apply to non-equilibrium boundary layers; the variations of dimension- 
less mixing length or eddy viscosity are not immense, but calculations of 
boundary-layer development in arbitrary pressure gradient using a universal 
mixing-length or eddy-viscosity function are not very satisfactory (although 
their predictions seldom fail as badly as those of the empirical momentum- 
integral methods in unusual pressure gradients). 
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FIGURE 5. Eddy viscosity vT f r /p  (aU/ay). 

0.2 0.4 0.6 0.8 1 .0 

Y1~995 

FIGURE 6. Mixing length I = (T/p)&/(aU/ay). 

3. The turbulent intensity and the function a, 
The inner layers in the boundary layers in zero pressure gradient and strong 

adverse pressure gradient were compared and discussed by Bradshaw (1965) who 
showed that the motion consists of an ‘active’ universal component scaling on 
( ~ / p ) *  and y, which produces the shear stress, and an ‘inactive’ component im- 
posed by the eddies and pressure fluctuations in the outer part of the boundary 
layer, which does not produce shear stress and can be regarded as a quasi-steady 
oscillation of the inner layer flow. Measurements in the inner layer of the mildly 
retarded boundary layer do not add much t o  the qualitative picture: the strength 
of the inactive motion is intermediate between that in the other two boundary 
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layers, as can be seen from the intensity measurements in figure 7 and the values 
of a1 = r / s  in figure 8 (here as elsewhere Klebanoff’s measurements in zero 
pressure gradient have been used). Near the outer edge of the boundary layers, 
the irrotational motion becomes of comparable intensity to the turbulent fluctua- 
tions and a, again decreases. The irrotational motion, like the inactive motion 
which is closely related to it, increases in relative intensity as the boundary layer 
is more strongly retarded. In  a quasi-infinite shear flow, in which the ‘inactive’ 
motion is minimal, the results of Rose (1966) indicate u1 21 0.18. 
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FIGURE 7. Turbulent intensity: (a)  a = -0.15, (b )  a = -0.255. 
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4. Intermittency and the outer-layer length scale 
The intermittency in the retarded boundary layers, measured from oscilloscope 

film records, follows the usual error-function law as found by Klebanoff (1955) in 
zero pressure gradient, with a mean at  y/&gg5 = 0-86,0-90 and 0.88, and a standard 
deviation a/&,,, = 0-15,0.14 and 0.18 for a = 0, - 0.15 and - 0.255 respectively, 
where UlU, = 0.995 at y = Sgg,. Since gis by definition the average distance of the 
laminar-turbulent interface from the surface it is the best possible choice for a 
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FIGURE 8. Ratio of shear stress to turbulent intensity. 

length scale of the outer-layer motion. Gartshore (1966) has suggested that u is a 
representative length scale of the large eddies, but if one thinks of the large eddies 
as ‘mixing jets’ (Grant 1958; see also $6 of the present paper) then CT is more 
closely related to a velocity scale of the large eddies, and the larger value of u in the 
strongly retarded boundary layer, in which the large eddies are strongest, is com- 
patible with this idea. The value of y/S,,, is the same in all three boundary layers 
to within the likely accuracy of measurement, so that we may take agg5, instead 
of g ,  as a length scale for the outer layer motion, at least inequilibrium boundary 
layers. Fiedler & Head (1966) found that y/Sgg, increased monotonically with H 
in non-equilibrium retarded boundary layers at rather low Reynolds numbers, 
U,S,lv < 5000, reaching values close to unity near separation. It is difficult to 
believe that H is an adequate parameter for correlating details of the turbulent 
motion, but the results indicate that the large eddy structure of highly non- 
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equilibrium boundary layers may be different in scale from that of equilibrium 
boundary layers. However, the calculations of Bradshaw et al. (1967), assuming a 
universal length scale distribution, seem to agree well with experiment for a wide 
range of non-equilibrium boundary layers, so that the changes in length scale im- 
plied by Fiedler & Head‘s measurements may not be important in practice. 
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FIGTTRE 9. Spectral density made dimensionless with 7/p and Sgs5 : a = 0, (a)  v-component, 
(b )  w-component, (c) ZLV spectra. 
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5. The frequency spectra and the dissipation length parameter L 
In  the inner layer, as was mentioned in $3, the spectra of the 'active' motion 

scale on (7/p)9 and y a t  all wave-numbers, as expected from the hypothesis of 
local equality of production and dissipation: it can be seen from the continuity 
equation that the additional motion imposed on the inner layer by the larger 
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FIGURE 10. Spectral density made dimensionless with r /p  and 8,,,:a = - 0.15. 
(a )  u-component, ( b )  w-component, ( c )  w-component, (d )  UV spectra. 
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eddies in the outer layer is mostly confined to the u and w components for dis- 
tances from the surface small compared to a typical wavelength, and therefore 
does not contribute to the shear stress in the inner layer. In the outer layer, as will 
be seen below, a large part of the shear stress comes from the large eddies which 
extend over most of the width of the outer layer, and we cannot appeal to any 
ideas of local energy equilibrium to derive a velocity scale for the turbulent 
motion. However, because the large eddies produce a large part of the shear stress 
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and turbulence production they control the energy supply to the smaller eddies, 
so that we may expect ( r /p)% to be an adequate velocity scale for the smaller 
eddies. 

The frequency spectra in the outer layer are plotted in figures 9 to 11 against 
w&,,,/U (=k,6,,, where k, is the one-dimensional wave-number) the spectral 
density of uiui, q5ii, being made dimensionless by r/p. The v2, w2 and UV spectrum 
measurements in zero pressure gradient, figure 9(a), ( b )  and (c ) ,  are new: u- 
component spectra have not been measured in this boundary layer in the present 
work but are given by Klebanoff (1955). 

The higher-frequency parts of the spectra in the outer layers of each boundary 
layer collapse quite well together on these scales, generally rather better than on 
3 and a,,,, but the collapse is not as good as the collapse on r / p  and y in the inner 
layer (Bradshaw 1965). Experimental scatter particularly affects the results near 
the outer edge where the shear stress is small, but apart from this it seems that 
the dimensionless spectral density tends to decrease towards the edge of the 
layer, indicating that in the ‘outer layer’, say the outer two-thirds of the boun- 
dary layer, the length scale gradually increases by 7-15 yo (or alternatively the 
ratio of the velocity scale to (7/p)9 decreases by 5-10 %). In  addition, there is a 
slight decrease in spectral density as the boundary layer is more strongly retarded. 
However, it seems that for engineering purposes the higher-frequency motion, 
presumably including the dissipation, in a given boundary layer is a function only 
of the local shear stress and the overall thickness of the boundary layer, so that 
L cc 6 and e cc (r/p)$/S within the turbulent fluid. 

It is also noticeable that the spectral densities of the three components are 
nearly isotropically related at high frequencies and follow nearly the - + power 
law predicted by Kolmogorov’s theory (see, for instance, Batchelor (1953)). In  
the unpublished version of this paper the existence of local isotropy was dis- 
missed, on the usual grounds that the shear correlation coefficient at  a given wave 
number, R,,(k) = q512/[q511. q522]4, was far from zero in the frequency range con- 
cerned, but further analysis of this and other data has led to the conclusion that 
the intensity spectra can follow the universal - 5 law at a given wave-number k 
even though R,,(k) is non-zero, provided that nearly all the production of turbu- 
lent energy occurs at  wave-numbers below k and nearly all the dissipation at  
wave-numbers above Ic. Because the shear-stress spectral density is falling rapidly 
at  the wave-numbers considered, this condition is compatible with non-zero 
RI2(k). A more detailed discussion, and evidence that an inertial subrange occurs, 
in grid turbulence or shear flow, for microscale Reynolds numbers Re, greater 
than 90 (or u,y/v > 200 in a boundary layer) is given by Bradshaw (1966b): the 
present results cover the range 100 < Re, < 400. Sandborn & Marshall (1965) 
have noted the presence of a - + power-law region in the spectrum for Re, 2 240. 
It has yet to be explained why the energy transfer through the spectrum becomes 
isotropic at such low wave-numbers (wS,,,/U - 12 say, a wavelength of fully half 
a boundary-layer thickness and as much as a sixth of the wavelength of the large 
eddies) : the usual arguments about local isotropy postulate a wave-number ratio 
of more nearly 100 to 1 between the energy-containing eddies and the largest iso- 
tropic eddies. This is a quite different phenomenon from the universality of the 
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energy transfer, that is its proportionality to (T/p)$/S.  Whatever the explanation, 
the fact that the spectral density can be represented as K’dki9  (where h” 21 0.5 
for the u-component and Q x 0.5 = 0.67 for the v and w components) even at  fairly 
modest laboratory Reynolds numbers provides us with a simple method of 
measuring turbulent dissipation and establishing the value of L in flows where it 
is not already known. 

The near-universality of the energy transfer implies near-universality of the 
relation between turbulent energy production, shear-stress production and 
spectral transfer of energy in the larger eddies. This is not the same as universality 
of large-eddy scales (the low-frequency spectra certainly do not scale on 7) but 
can be crudely regarded as universality of large eddy correlation shaqes so that 
the large-eddy motions in different equilibrium boundary layers differ only by 
scale factors of velocity and length. Evidently, equilibrium turbulent boundary 
layers comprise a sufficiently restricted range of flows for the turbulence structure 
to be nearly the same in each. For the turbulence structure to be similar in differ- 
ent parts of a given boundary layer it is necessary for an appreciable amount of 
turbulent diffusion to be effected by eddies with length scales of the same order 
as the boundary-layer thickness-this is the antithesis of the ‘mixing length’ 
concept of dependence on local conditions which is valid in the inner region of the 
boundary layer. This incidentally explains why the inner-layer spectra are so 
markedly different in shape from those in the outer layer as well as differing in 
scale. 

6. The large-eddy structure and the diffusion function G 
Townsend (1956), Grant (1958) and others have demonstrated that the large 

eddies in a turbulent shear flow form a coherent and identifiable group, and con- 
trol the overall rate of spreading by contorting the boundary between the turbu- 
lent and non-turbulent fluid and by effecting bulk convection of turbulent energy 
from regions of maximum production. The qualitative concept is very useful, and 
immediately provides support for the ideas of the last paragraph. The large 
eddies in the outer part of a boundary layer do not seem to influence the inner 
layer, except in the ‘inactive’ sense of Bradshaw (1965): in the inner layer, the 
rapid variation of length scale with distance from the wall prevents the genera- 
tion of any motion analogous to the large eddies in the outer layer. Townsend also 
hypothesized that, in a self-preserving flow, the large eddies should spend most of 
their lives in energy equilibrium, and derived a result which implies near- 
constancy of dimensionless eddy viscosity in all equilibrium boundary layers, as 
is experimentally observed : strictly, the energy-equilibrium analysis is valid only 
if the mean-flow momentum is constant during the life of a large eddy which is 
true only for free shear layers, but the error is probably small in boundary layers. 

The actual intensity of the large eddies does not appear in the final results of 
the theory, but it is an implicit assumption of the theory that the large eddies do 
not themselves produce much of the shear stress, whereas in the above discussion 
we have implied that nearly all the shear stress occurs at  frequencies below that 
at which the motion becomes universal. In  the mixing layer it was found that 
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about a quarter of the area under the shear-stress frequency spectrum was 
accounted for by a peak, projecting above the general level of the spectrum, 
which was identified with the large eddy motion. The conclusion of Bradshaw, 
Ferriss & Johnson (1964) that the large eddies produced a quarter of the shear 
stress was a very conservative one, based on a rather nake interpretation of one- 
dimensional spectra: whereas it is likely that a noticeable part of the energy at 
large-eddy wavelengths is not part of the group of eddies which produce the 
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FIUURE 12. Contribution of large-eddy motion to shear stress : one-dimensional spectrum, 
linear scales. 

peaks in the spectra, it  is probable that the area ACPDF in figure 12 is a better 
approximation to the total energy of the coherent large eddies than the area 
BCPDE. This means that both in the mixing layer and at  least the more strongly 
retarded boundary layers the large eddies produce a significant proportion of the 
total shear stress. Moreover, nearly all the shear stress occurs at frequencies less 
than three or four times the preferred frequency of the large eddies. Therefore, 
the assumption in the large-eddy equilibrium theory that the ‘eddy viscosity’ of 
the smaller-scale motion is equal to the eddy viscosity of the turbulence as a 
whole cannot be justified on Townsend’s grounds. There is no reason to suppose 
that the eddy viscosities of the large-scale and small-scale eddies are equal. The 
reasonable quantitative agreement of the calculations with experiment cannot be 
invoked in support, because the large-eddy shape assumed by Townsend is not 
very like the mixing-jets found by Grant. 

The large eddies increase in strength relative to the rest of the turbulence as the 
adverse pressure gradient and turbulence level increase, as can be seen from the 
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increasingly distinct peaks in the spectra in figures 9-11 respectively. Since the 
pressure gradient does not affect the flow directly, we must find a suitable 
measure of the 'turbulence level'. ~ ~ ~ ~ / p U f  will be used here, and has been found 
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FIUURE 13. Ratio of peak spectral density to maximum shear stress. (a)  w-component, 
( b )  w-component. 

to be adequate for correlating experimental data on the entrainment function G. 
By T , ~ ,  we really mean 'maximum shear stress in the outer part of the boundary 
layer', since the large eddy structure is not likely to be affected by a large shear 
stress in the small-scale turbulence near the wall such as occurs in accelerated 
boundary layers or boundary layers with suction. 

The large eddy structure in the boundary layer in zero pressure gradient is 
noticeably less prominent than in the retarded boundary layers, although this is 
somewhat obscured in the present results because the lowest frequency measured, 
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16 c/s, is a much lower dimensionless frequency in the thinner boundary layer in 
zero pressure gradient whereas the spectra in the retarded boundary layers do not 
extend down to the region of constant spectral density at  very low dimensionless 
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FIGURE 14(a), ( b ) .  For legend see facing page. 

frequency. Figures 13(a) and (b) show the few available measurements of the 
peak spectral densities of the v and w component spectra in the three boundary 
layers, normalized by the maximum shear stress instead of the local shear stress. 
The three curves for a given component seem to be very roughly geometrically 
similar, but the overall level of spectral density increases much more quickly than 
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T,,,: many more spectrum measurements would be needed to define the trends 
more accurately. 

A better overall measure of the strength of the large-eddy motion is the rate 
of diffusion of energy in the outer part of the boundary layer : a t  the edge of the 
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FIGURE 14. Turbulent energy balance. (a) a = 0, data of Klebanoff (1955); (b) a = 0, 
turbulent diffusion; (c) a = -0.15; (d )  a = -0.255. 

boundary layer, where the shear stress tends to zero and the energy balance 
therefore reduces to ‘advection = diffusion ’, the rate of propagation of turbulent 
energy in the y direction is jZ lp  + $6 so that a velocity of propagation V, may be 
defined as 

41 Fluid Mech.29 
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In  a self-preserving boundary layer, V, is equal to the mean rate of propagation 
of turbulent fluid into the free stream-the ‘entrainment velocity ’. Therefore 

d 
dx V, = - U,(6- 6,) 

which can be obtained from mean velocity measurements more easily than by 
direct measurement of turbulent diffusion. It is found empirically (Bradshaw 
et ul. 1967) that V,/U, is very nearly proportional to both in equi- 
librium and non-equilibrium boundary layers and even in the mixing layer (at 
the high-velocity edge). If we take (Tmax/P)+ as a suitable velocity scale for the 
smaller-scale turbulence in the central part of the boundary layer, justifying this 
by the fact that the spectra scale on local r at the higher frequencies, it is implied 
that the ratio of the large-eddy velocity fluctuation t’o the smaller-scale velocity 
fluctuations in the central part of the boundary layer is proportional to 
(.rmax/p U3°’5 approximately. 

The exact shape of the large eddies has been discussed for the boundary layer 
in zero pressure gradient and for the wake by Grant (1958) and for the free 
mixing layer by Bradshaw et aE. (1964). In the wake and mixing layer, the large 
eddies take the form of ‘mixing jets’ or tongues of fluid erupting at  more or 
less regular intervals into the irrotational flow. Grant felt that the evidence for 
quasi-periodic mixing jets in the boundary layer in zero pressure gradient was not 
entirely conclusive because the B22(r, 0 , O )  correlation had a single negative loop 
instead of being periodic, but the v-component spectra in the outermost part of 
the boundary layer certainly show pronounced peaks, which imply a preferred 
periodicity: the peak is not noticeable in the spectrum at y/S,,, = 0-53, however, 
suggesting that the mixing jets only become observable in the extreme outer part 
of the boundary layer. All Grant’s measurements were made at  y/S,,, 6 0.5. As 
the pressure gradient becomes more adverse the peak in the v-component spectra 
in the central part of the boundary layer becomes more obvious, which fits in 
with the suggestion above that the large eddies become proportionately stronger 
as the maximum shear stress increases. Judging by the spectra, the large eddy 
structure in the strongly retarded boundary layer (r,,,/pUf N 0.003) is a weaker 
version of that in the mixing layer (.rm,,/pU21 2: 0.01) a.nd it seems very likely that 
the large eddies take the form of mixing jets in boundary layers as well as in wakes 
and free mixing layers, because the strongly retarded boundary layer closely 
resembles a mixing layer in which mixing jets certainly exist, but a complete set 
of correlations in a retarded boundary layer would be necessary to clinch this. 

7. The turbulent energy balance 
- 

The equation for the kinetic energy per unit mass of the turbulence, $42, is 

advection = production - diffusion - dissipation. 
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All numerical values presented here are in the dimensionless form obtained by 
multiplying the above equation by 8995/U:. Klebanoff (1955) has published an 
energy balance for the boundary layer in zero pressure gradient in which the 
dissipation was measured directly (that is, by measuring the microscales) and the 
diffusion obtained by difference. Direct dissipation measurements are very difi- 
cult and of doubtful reliability, whereas pv = & + 2+ wx can be measured 
more straightforwardly, although it is a severe test of the linearizing circuits and 
the results have to be differentiated graphically to obtain the diffusion. The pres- 
sure diffusion cannot be measured at  all, but it is certainly no larger than the 
velocity diffusion within the turbulent fluid and is probably much smaller, so that 
an estimate of the dissipation derived by neglecting the pressure diffusion and 
measuring all the other terms should not be seriously in error except near the 
edge of the boundary layer: in the irrotational field the dissipation is of course 
negligible and the advection is supplied entirely by pressure diffusion, so that the 
latter cannot be neglected when the intermittency is small. 

The energy balances for the three boundary layers are plotted in figure 14(a-d). 
The differences are considerable: whereas the flow of energy in the outer part of 
the boundary layer in zero pressure gradient is so small as to be almost invisible 
on the graph (the same results are plotted, with a change of scale, as figure 10.2 
of Townsend (1956)) the advection and diffusion in the outer part of the strongly 
retarded boundary layer are of the same order as the production and dissipation 
in the central part of the layer. The ratio of advection or diffusion to production 
in the outer part of the layer can be shown to be proportional to pT‘g/~: since it 
was shown in $6 that V, is roughly proportional to rma,/pUl it  follows that, a t  a 
given value of r/rma, (very roughly a given value of y /8)  the ratio of advection or 
diffusion to production is roughly proportional to r,,,/p Uf.  

The quantity plotted as ‘diffusion’ in Klebanoff’s results for zero pressure 
gradient is obtained by difference, using the measured dissipation. In  the other 
two boundary layers, ‘diffusion’ is the gradient of +Fv (neglecting p )  and ‘dis- 
sipation’ is obtained by difference. Since Klebanoff’s diffusion does not integrate 
to zero it is clearly inaccurate, and the large loss by diffusion from the inner half 
of the boundary layer is likely to be spurious: it certainly does not fit in with the 
trend of the other two boundary layers, nor with the ‘diffusion’, a(g”v)/ay, 
measured in the present experiments (figure 14 (b) ) .  This directly-measured dif- 
fusion does not integrate to zero either, because tended to a small positive 
value near the wall: since this implies a large loss by diffusion from the region very 
close to the wall it is probably an error. 

The values of a ( + F ) / a y  in the three boundary layers give a reasonably con- 
vincing representation of the total diffusion: for instance ‘advection’ = ‘diffusion ’ 
near the outer edge as expected, so that the effect of a(Fv/p)/ay is not very large 
even in this region. The value of 3 diffusion in the inner half of the strongly 
retarded boundary layer seems to be considerably higher than the expected total 
diffusion: it is roughly equal to the dissipation and whereas these two terms are 
apparentlynearlyequalinthe mixing layer (Bradshaw & Ferriss 1965a) one would 
not expect them to be equal in a boundary layer with only a third of the maximum 
shear stress. Moreover, the values of the dissipation length parameter L derived 

41-2 
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from ‘dissipation-by-difference ’ (figure 15) are considerably higher than the 
universal curve used successfully in calculations. It is possible that Tv is of oppo- 
site sign to +q2v, as Lilley (1964) suggested it should be in the inner layer, but as 
jZ is undoubtedly positive in the irrotational field outside the boundary layer its 
variation with y would be rather curious and it is difficult to visualize the physical 
mechanisms involved, partly because one cannot really consider @ separately 
from 8. To within the accuracy of measurement of 3, which is certainly rather 
poor, we may say that Tv/p is negligible except of course in the irrotational field. 
The measurements of 8 are given by Bradshaw (1965). 
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FIGURE 15. Dissipation length parameter L = (~/p)Q/a. 0, a = - 0.15; x , a = - 0.255. 

It is interesting to note that production is roughly equal to dissipation in all 
parts of the three boundary layers except the outer edge (if one grants that the 
dissipation in the central part of the strongly retarded boundary layer is too 
small): the same result has been found in the calculations of Bradshaw et al. 
(1967). There is no real ‘explanation’ except that advection and diffusion are 
equal and opposite, to quite a good approximation, for y/6 > 0.7 and fairly small 
nearer the surface than this. It is implied that the dissipation length parameter L 
is nearly equal to the mixing length over most of the boundary layer so that the 
universality of L implies the universality of the mixing length-which is indeed 
observed. In  non-equilibrium boundary layers the advection is not small for 
y/6 < 0.7, so that production is not nearly equal to dissipation and the mixing 
length is not nearly equal to the dissipation length parameter. The ideas of the 
present paper are epitomized by the claim that the dissipation length parameter, 
which connects two properties of the turbulence, is much more nearly universal 
than the mixing length, which ostensibly connects a property of the turbulence 
with a property of the mean flow. 

Most of the experimental work was done by M. G. Terrell. D. H. Ferriss, G. K. 
Knight and P. C. Carpenter (vacation student, summer 1964) helped in the earlier 
stages of the work. 



The turbulence structure of equilibrium boundary layers 645 

The work described in this paper forms part of the research programme carried 
out by the Aerodynamics Division of the National Physical Laboratory for the 
Ministry of Aviation. 
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